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Abstract
The motion of a particle in the field of dispiration (due to a wedge disclination
and a screw dislocation) is studied by path integration. By formulating a
SO(2) × T (1) gauge theory, first we derive the metric, curvature and torsion
of the medium of dispiration. Then we carry out explicitly path integration for
the propagator of a particle moving in the non-Euclidean medium under the
influence of a scalar potential and a vector potential. We also obtain the winding
number representation of the propagator by taking the non-trivial topological
structure of the medium into account. We extract the energy spectrum and
the eigenfunctions from the propagator. Finally we make some remarks for
special cases. Particularly, paying attention to the difference between the result
of the path integration and the solution of Schrödinger’s equation in the case of
disclination, we suggest that the Schrödinger equation may have to be modified
by a curvature term.

PACS number: 61.72.Lk

(Some figures may appear in colour only in the online journal)

1. Introduction

In recent years, quantum effects on particle propagation in a field of topological defects have
attracted considerable attention (see, e.g., [1–3]; see also a recent review article [4]). Although
the notion of ‘defects’ in physics was originally associated with crystalline irregularities, it
has been extended to more general topological structures such as entangled polymers, liquid
crystals, vortices, anyons, global monopoles, cosmic strings, domain walls, etc. In the 1950s,
from the structuralogical aspect, Kondo et al [5] extensively studied unified geometrical
treatments of various subjects including elastic and plastic media, relativity, network systems
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and information theory. In particular, Kondo [6] related dislocations to Cartan’s torsion in the
medium. Since then, the relation between dislocation theory and non-Riemannian geometry
has been well established. More recent approaches to defect problems are gauge theories
similar to those in particle physics [7–10]. In 1978, Kawamura [11] pointed out that a screw
dislocation in a crystal produces an Aharonov–Bohm-type effect in particle scattering. The
Aharonov–Bohm effect [12] is usually understood as a topological effect [13–16]. Since
standard approaches to particle–defect interaction problems consist in solving relevant (local)
differential equations, the role of topology often becomes obscure.

In this paper, we analyze the quantum behavior of a particle in the vicinity of a topological
defect by the path integral method. Specifically, we carry out path integration for a particle
moving around a dispiration4. The dispiration we consider is a composite structure of a screw
dislocation and a wedge disclination with a common defect line. In section 2, we study the
geometrical and topological properties of the dispiration by using the SO(2) × T (1) gauge
theory. For the medium M of the dispiration, we derive the squared line element

ds2 = dr2 + σ 2r2 dθ2 + (dz + β dθ )2, (1)

where β and σ are the parameters directly related to the Burgers vector of dislocation and
the Frank vector of disclination, respectively. The medium has a non-Euclidean structure with
singular torsion and curvature along the dispiration line.

In section 3, we calculate in detail the path integral to obtain the propagator (Feynman
kernel) for a particle in the field of the dispiration characterized by the line element (1) under
the influence of a scalar potential and a vector potential. From the propagator so obtained,
we extract the energy spectrum and the energy eigenfunctions. In section 4, converting the
propagator in the partial wave expansion into that in the winding number representation,
we show that the effect due to the multiply connected structure of the medium is taken into
account. The energy eigenfunctions and the energy spectrum are extracted from the propagator
in section 5. Section 6 is devoted to interpretation of the energy spectrum. In particular, we
discuss the difference between the results from the Schrödinger equation with no curvature
term and those from the path integral for the case of the conical space. Our path integral
calculation suggests that the standard Schrödinger equation may have to be modified by a
curvature term in order for the two approaches to be consistent.

2. Gauge formulation of dispiration

The dispiration under consideration is a combined structure of a screw dislocation along the z-
axis and a wedge disclination about the same z-axis. See figures 1 and 2. The gauge theoretical
approach to dislocation and disclination has been extensively discussed in the literature [7–10].
Here we wish to present a SO(2) × T (1) gauge approach to the dispiration developed along
the line similar to the formulation by Puntigam and Soleng [10].

The SO(2)×T (1) gauge transformation: in the gauge theoretical treatment, a deformation
of an elastic medium in three dimensions is described by a local coordinate transformation
consisting of a rotation and a translation,

x′ = ρ(x) · x + τ(x), (2)

where ρ ∈ SO(2), τ ∈ T (1), and x = {x, y, z} is the position vector of the undeformed
three-dimensional medium.

4 The Volterra process of forming a dislocation and a disclination involves a translation and a rotation, respectively.
A dispiration is a defect formed by a translation and a rotation at the same time [17]. See figures 1 and 2.
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Figure 1. Make a thin cylindrical tube along the central line and remove a wedge of angle γ > 0
from the main body.

Figure 2. Close the open lips in such a way that a screw dislocation is created along the center
line. The resulting medium is what we call the field of a dispiration.

As is well known, an axial wedge disclination can be created by the so-called Volterra
process, that is, by (a) removing a wedge-shaped portion of an angle γ ∈ [0, 2π) from the
medium and pasting the open walls together, or (b) inserting an extra wedge-shaped portion
with γ ∈ [−2π, 0) into the medium. Note that the deficit angle γ is chosen to be positive for
case (a) and negative for case (b). See figure 1 for case (a). The wedge disclination about the
z-axis is a rotational deformation obtained by gauging SO(2):

x′ = ρ(θ ) · x, (3)

with the rotation matrix

ρ(θ ) =
⎛
⎝cos(γ θ/2π) − sin(γ θ/2π) 0

sin(γ θ/2π) cos(γ θ/2π) 0
0 0 1

⎞
⎠ . (4)

Here θ = tan−1(y/x) ∈ [0, 2π).
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A screw dislocation lying along the z-axis (i.e. having a constant Burgers vector pointing
toward the z-direction) as shown in figure 2 is a translational deformation obtained by gauging
the z-translational group T (1):

x′ = x + τ(θ ), (5)

with the angle-dependent z-translation vector

τ(θ ) = − bθ

2π
ez, (6)

where b is a translation parameter and θ = tan−1(y/x) as before.
The dispiration comprised of such a wedge disclination and a screw dislocation is

described by the combined coordinate transformation,

x′ = ρ(θ ) · x + τ(θ ), (7)

where ρ(θ ) and τ(θ ) are given by (4) and (6), respectively.
Gauge connections: the standard Yang–Mills theory localizes with respect to the external

space the gauge group which acts homogeneously in the internal space and introduces the
gauge potential or the connection � that transforms under the group action G as

�′ = G�G−1 − dGG−1.

What we wish to formulate for the dispiration is a SO(2) × T (1) gauge approach which
differs in character from the Yang–Mills theory; the gauge group acts inhomogeneously on the
(internal) coordinates x that are soldered locally to the (external) coordinates of the medium
of dispiration. It is more appropriate for us to follow the procedures used in constructing a
Poincaré gauge theory [10, 18] or an affine gauge theory [19] for gravity.

First we write the group action (7) in the matrix form

Gx̄ =
(

ρ τ

0 1

) (
x
1

)
=

(
ρ · x + τ

1

)
.

Then we define the connection � as

� =
(

�(R) �(T )

0 0

)
,

where �(R) and �(T ) are the rotational connection and the translational connection, respectively.
In order for � to behave like a connection in the Yang–Mills theory, �(R) and �(T ) must
transform as

�(R)′ = ρ�(R)ρ−1 − (dρ)ρ−1

and

�(T )′ = ρ�(R) − dτ − [ρ�(R)ρ−1 − (dρ)ρ−1]τ.

Evidently the rotational connection is a SO(2)-valued one-form, and the translational
connection is an R-valued connection one-form.

Now we construct the solder form that locally connects the global gauge coordinates x(0)

to the coordinates x(θ ) of the dispiration medium as

ω = dx + �(R) · x + �(T ), (8)

which is a vector-valued one-form5. It transforms as ω′ = ρω, leaving g = ωT · ω invariant.
Since we create the dispiration by a gauge transformation in flat space, we choose a connection

5 It is possible to derive this solder form by starting with the homogeneous group SO(4) and applying the group
contraction to reduce it to SO(3) × T (1). The solder form may be obtained as a limiting form of a component of the
connection. For instance, the de Sitter gauge theory can be contracted to the Poincaré gauge theory, so that the solder
form is obtained from the gauge potential as the vierbeine [20]. This contraction scheme does not work for the affine
gauge theory [19].

4



J. Phys. A: Math. Theor. 45 (2012) 075301 A Inomata et al

that vanishes at θ = 0. Then the corresponding rotation and translation connections are given,
respectively, by

�(R) = ρ dρ−1 (9)

and

�(T ) = −dτ. (10)

The rotational connection (9) and the translational connection (10) can be easily calculated
by using the rotation matrix (4) and the translation vector (6). The differential of the rotation
matrix (4) is

dρ−1(θ ) = dρ(−θ ) = − γ

2π
dθ

⎛
⎝sin(γ θ/2π) − cos(γ θ/2π) 0

cos(γ θ/2π) sin(γ θ/2π) 0
0 0 0

⎞
⎠ , (11)

where

dθ = 1

r2
(x dy − y dx), r2 = x2 + y2. (12)

This and the rotation matrix (4) together lead us to the rotational connection

�(R) = ρ(θ ) dρ−1(θ ) = γ

2π
m dθ, (13)

where

m =
⎛
⎝ 0 1 0

−1 0 0
0 0 0

⎞
⎠ . (14)

The translational connection is found in a simple form by differentiating the translation vector
(6),

�(T ) = −dτ = b

2π
dθ ez. (15)

Substitution of (13) and (15) into (8) yields

ω = dx + γ

2π
dθm · x + b

2π
dθ ez =

⎛
⎝dx + (γ /2π)y dθ

dy − (γ /2π)x dθ

dz + (b/2π) dθ

⎞
⎠ . (16)

Utilizing this solder form as the coframe, we can determine the squared line element
ds2 = gi j dxi ⊗ dx j in the medium of the dispiration,

ds2 = δαβωα ⊗ ωβ = dr2 + σ 2 r2 dθ2 + (dz + β dθ )2, (17)

where

σ = 1 − γ

2π
, β = b

2π
. (18)

Evidently σ ∈ (0, 1] when γ ∈ [0, 2π), and σ ∈ (1, 2] when γ ∈ [−2π, 0).
In this paper, we consider the non-simply connected medium M = R3\{x = y = 0}

with metric (17) as the field of dispiration. In the following, we briefly review some of the
geometrical and topological properties that will be useful for later discussion.

Curvature and Frank vector: the curvature two-form R is defined in terms of the rotational
connection �(R),

R = d�(R) + �(R) ∧ �(R). (19)

For the case of dispiration with (13), since �(R) ∧ �(R) = 0, it integrates into∫
S

R =
∫

S
d�(R) =

∫
∂S

�(R) =
∫

∂S

γ

2π
m dθ = γ m, (20)
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where ∂S denotes the boundary of a surface S. Now we choose an orthogonal frame (ξ 1, ξ 2, ξ 3)

such that ds2 = δklξ
k ∧ ξ l with ξ 1 = dr, ξ 2 = σ r dθ , ξ 3 = dz + β dθ . Then we have

R = Rklξ
k ∧ ξ l . The surface is chosen to be orthogonal to ξ 3. Equation (20) implies that

R = γ mδ(2)(ξ 1, ξ 2) dξ 1 ∧ dξ 2. (21)

The corresponding scalar curvature is

R = 2γ δ(2)(ξ 1, ξ 2), (22)

or equivalently

R = 2
γ

σ
δ(2)(x, y). (23)

Apparently the curvature of the medium M is zero everywhere except along the z-axis
(x = y = 0). Note that the curvature is created not by the dislocation but by the disclination.

The Frank vector f = {�23,�31,�12} is defined to characterize a disclination with

� =
∫

S
R = γ m, (24)

where again the integral is over a surface S which is delimited by a loop ∂S enclosing the
z-axis. Obviously the only non-vanishing components of the Frank vector for the dispiration
are given by �12. As a result, the Frank vector takes the form

f = γ ez, (25)

which points toward the z-direction and its magnitude is identical to the deficit angle γ .
Torsion and Burgers vector: the torsion two-form is defined by

T = dω + �(R) ∧ ω = R · x + d�(T ) + �(R) ∧ �(T ), (26)

which, in general, depends not only on the translational connection but also on the rotational
connection. For (13) and (15), �(R) ∧�(T ) = 0. Note also that the integration of R ·x vanishes.
Then the torsion two-form integrates into∫

S
T =

∫
S

d�(T ) =
∫

∂S
�(T ) = b ez, (27)

from which follows

T = b ezδ
(2)(ξ 1, ξ 2) dξ 1 ∧ dξ 2. (28)

We see that the only non-vanishing component of the torsion two-form is in the z-direction
and is contributed only by the screw dislocation.

The Burgers vector b is defined by the surface integral of the torsion two-form

b =
∫

S
T (29)

which has been evaluated in (27)

b = b ez. (30)

As is expected, the translation parameter b of (6) is indeed the magnitude of the Burgers vector
b.

Conical space: before concluding this section, we consider a special case of the line
element (1) with constant z and β = 0. The two-dimensional surface having the metric

dl2 = dr2 + σ 2r2 dθ2 (31)

6
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to which (1) reduces may be realized as a conical surface Mc if the surface is imbedded into a
three-dimensional Euclidean space E3. Let

X = (σ r cos θ, σ r sin θ,
√

1 − σ 2 r). (32)

Apparently,

I : dX · dX = dl2 (33)

which is the first fundamental form of the imbedded surface Mc. Again, parameterizing the
surface by 0 < r < ∞ and 0 � θ < 2π , we have the metric tensor and its inverse,

gab =
(

1 0
0 σ 2r2

)
, gab =

(
1 0
0 σ−2r−2

)
, (34)

which will be used later. With

Xr = (σ cos θ, σ sin θ,
√

1 − σ 2), (35)

Xθ = (−σ r sin θ, σ r cos θ, 0), (36)

the unit vector normal to Mc at a point (r, θ ),

n = Xr × Xθ /|Xr × Xθ |, (37)

is easily calculated to be

n = (−
√

1 − σ 2 cos θ, −
√

1 − σ 2 sin θ, σ ). (38)

The second fundamental form

II : −dX · dn = Gab dua ⊗ dub (39)

is also immediately obtained for the conical surface Mc as

− dX · dn =
√

1 − σ 2 σ r dθ2. (40)

Hence,

G =
(∑

b

gabGbc

)
=

(
0 0
0

√
1 − σ 2/(σ r)

)
(41)

whose two eigenvalues k1 = 0 and k2 = √
1 − σ 2/(σ r) are the principal curvatures of the

conical surface for r �= 0. The Gaussian curvature and the mean curvature of a two-dimensional
surface imbedded in E3 are defined, respectively, by

K = det G = k1k2 (42)

H = 1
2 tr G = 1

2 (k1 + k2). (43)

For the conical surface in question,

K = 0 and H =
√

1 − σ 2/(2σ r) (44)

for r �= 0. Of course, the Gaussian curvature K does not vanish at the apex of the cone.
According to the Gauss–Bonnet theorem,∫

S
K da +

∫
∂S

kg dl = 2πχ(S), (45)

where S is a compact two-dimensional Riemann manifold with boundary ∂S, K is the Gaussian
curvature of S, kg is the geodesic curvature of ∂S and χ(S) is the Euler characteristic of S.

7
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Now we let S be the lateral surface of a frustum with slant height r. Then kg = 1/r and the
line element dl integrated along the boundary ∂S with dr = 0 result in∫

∂S
kg dl = 2πσ = 2π − γ , (46)

where γ is the deficit angle defined in (18). The Euler characteristic of a cone is unity. Hence,
we have ∫

S
K da = γ , (47)

where da = σ r dr dθ . From this and (44) follows

K = γ

σ
δ2(x, y) (48)

which includes the curvature at the apex (r = 0). As is well known, the Ricci or scalar
curvature of a two-dimensional manifold is twice the Gaussian curvature. Indeed, twice the
Gaussian curvature (48) coincides with the scalar curvature (23).

3. Path integration

The medium surrounding the dispiration considered in the preceding section is M = R3\
{x = y = 0}, which is geometrically a non-Riemannian space and topologically a non-simply
connected space. In this section, we carry out path integration for the propagator of a particle
moving in the field of the dispiration. To confine the particle in the vicinity of the dispiration,
we introduce a two-dimensional harmonic oscillator potential. Furthermore, we assume a
repulsive inverse-square potential to prevent the particle from falling into the singularity at the
defect line. For the purpose of comparison, we also introduce a vector potential due to a flux
tube and a uniform magnetic field.

The standard approach deals with the Schrödinger equation in curved space. As will be
discussed in section 5, the Schrödinger equation is usually modified in curved space not only
by the Laplace–Beltrami operator replacing the Laplacian but also the so-called curvature term
added as an effective potential. The energy spectrum is sensitive to the type of curvature term;
yet the controversy on the choice of the term is not fully settled. The path integral calculation
we present suggests that the Gaussian curvature of the surface where the particle moves would
dominate the curvature term.

3.1. The Lagrangian

Now that the dispiration field is characterized by the line element (17), the Lagrangian for a
charged point particle of mass M moving in the vicinity of the dispiration under the influence
of a scalar potential V (x) and a vector potential A(x) is written as

L = 1

2
M

(
ds

dt

)2

− e

c
ẋ · A(x) − V (x). (49)

As has been mentioned before, we choose the vector potential A(x) consisting of two parts:
one due to an ideally thin flux tube that contains the constant magnetic flux � along the
dispiration line and another due to a uniform constant magnetic field B = B ez pointing toward
the z-direction. Then the vector potential term of Lagrangian (49) is expressed in cylindrical
coordinates (r, θ, z) as

e

c
ẋ · A = α�θ̇ + MωLr2θ̇ , (50)

8
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where

α = e�

2π�c
, ωL = eB

2Mc
. (51)

Here α is the ratio of the magnetic flux to the fundamental fluxon �0 = 2π�c/e, which
is identical to the statistical parameter in Wilczek’s anyon model [35], and ωL is the Lamor
frequency. The flux tube is included in our calculation in order to observe the similarity between
the Aharonov–Bohm effect and the effect of a screw dislocation. In the scalar potential V (x),
we include a two-dimensional short-range repulsive potential (the inverse square potential with
κ > 0 sufficiently large) to emphasize the impenetrable feature of the central singularity, and a
two-dimensional long-range attractive potential (the harmonic oscillator potential) to confine
the particle in the vicinity of the dispiration. Namely, V (x) is specified to be a two-dimensional
central force potential,

V (r) = κ�
2

8Mσ 2r2
+ 1

2
Mω2

0r2, r2 = x2 + y2. (52)

Thus, the Lagrangian we consider is

L = 1
2 M{ṙ2 + σ 2r2θ̇2 + (ż + βθ̇ )2} − α�θ̇ − MωL r2θ̇ − V (r). (53)

3.2. The propagator

The transition amplitude (propagator) for the three-dimensional motion of the charged particle
from the point x′ = (r′, θ ′, z′) to point x′′ = (r′′, θ ′′, z′′) can be calculated by the path integral
[21]

K(x′′, x′; τ ) =
∫ x′′=x(t ′′ )

x′=x(t ′ )
exp

[
i

�

∫ t ′′

t ′
L dt

]
D3x, (54)

where τ = t ′′ − t ′ > 0. The integral measure must be so chosen that the propagator satisfies
the properties

lim
t ′′→t ′

K(x′′, x′; t ′′ − t ′) = δ(x′′ − x′), (55)

∫
K(x′′, x; t ′′ − t) K(x, x′; t − t ′) d3x = K(x′′, x′; t ′′ − t ′). (56)

The path integral we calculate with Lagrangian (53) is

K(r′′, z′′; r′, z′; τ ) =
∫

exp

[
i

�

∫ t ′′

t ′

{
M

2
(ṙ2 + σ 2r2θ̇2)

+M

2
(ż + βθ̇ )2 − α�θ̇ − MωLr2θ̇ − V (r)

}
dt

]
D2rDz. (57)

In (57), r signifies two variables (r, θ ) symbolically, and the two-dimensional integral measure
d2r will be specified later. After path integration, from the propagator, we should be able to
extract the energy spectrum and the wavefunctions for the system.

3.3. The z-integration

First we perform the z-integration by letting ζ = z +βθ . The z-path integral is nothing but the
Gaussian path integral for a one-dimensional free particle, which yields the standard result∫ ζ ′′=ζ (t ′′ )

ζ ′=ζ (t ′)
exp

[
i

�

∫ t ′′

t ′

M

2
ζ̇ 2 dt

]
Dζ =

√
M

2π i �τ
exp

[
i M(ζ ′′ − ζ ′)2

2�τ

]
. (58)

9
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Now we rewrite the right-hand side of (58) as√
M

2π i�τ
exp

[
i M(ζ ′′ − ζ ′)2

2�τ

]
= 1

2π

∫ ∞

−∞
e−iτ�k2/2M ei(ζ ′′−ζ ′)k dk, (59)

where �k is the z-component of momentum of the particle. We also note that

ζ ′′ − ζ ′ = z′′ − z′ + β ′(θ ′′ − θ ′) = z′′ − z′ + β

∫ t ′′

t ′
θ̇ dt. (60)

Incorporating these results into the path integral (57), we decompose the propagator as

K(x′′, x′; τ ) = 1

2π

∫ ∞

−∞
dk eik(z′′−z′ ) e−iτ�k2/2MK(k)(r′′, r′; τ ) (61)

with the two-dimensional propagator for a fixed k value,

K(k)(r′′, r′; τ ) =
∫ r′′=r(t ′′ )

r′=r(t ′)
exp

{
i

�

∫ t ′′

t ′

[
M

2
(ṙ2 + σ 2r2θ̇2)

− MωLr2θ̇ − ξ�θ̇ − V (r)

]
dt

}
D2r, (62)

where ξ = α − βk. The integral on the right-hand side of (59) is the spectral decomposition
of the z-motion with the continuous spectrum,

Ek = �
2k2

2M
. (63)

Next we make a change of the angular variable from θ to ϑ by letting

ϑ̇ = θ̇ − ω̄, (64)

where ω̄ = ωL/σ
2. Accordingly, the k-propagator (62) is transformed into

K(k)(r′′, r′; τ ) =
∫ r′′=r(t ′′ )

r′=r(t ′)
exp

{
i

�

∫ t ′′

t ′

[
M

2
(ṙ2 + σ 2r2ϑ̇2) − ξ�ϑ̇ − U (r)

]
dt

}
D2r(r, ϑ ),

(65)

where

U (r) = V (r) + 1

2
Mω̄2r2 − ξ�ω̄, (66)

or

U (r) = κ�
2

8Mσ 2r2
+ 1

2
Mω2r2 + V0 (67)

where

ω2 = ω2
0 + ω̄2, V0 = −ξ�ω̄. (68)

Note that ϑ is the angular variable in a rotating frame with the angular velocity −ω̄. For
simplicity, the constant V0 in the potential will be ignored in the calculation below.

3.4. The short-time action

To calculate the two-dimensional path integral (65) in polar coordinates [22–24], we first
express it in discretized form,

K(k)(r′′, r′; τ ) = lim
N→∞

∫ r′′=r(t ′′)

r′=r(t ′)

N∏
j=1

K(k)(r j, r j−1; ε)

N−1∏
j=1

d2r j, (69)

10
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where the propagator for a short-time interval ε = t j − t j−1 = τ/N is given by

K(k)(r j, r j−1; ε) = Aj exp

(
i

�
S j

)
. (70)

Now we select a relevant approximation of the short-time action Sj in cylindrical coordinates
and determine the amplitude Aj so as to meet the normalization condition

lim
ε→0

K(k)(r j, r j−1; ε) = δ(2)(r j − r j−1), (71)

where the two-dimensional delta function satisfies∫
δ(2)(r j − r j−1) d2r j = 1. (72)

The short-time action is

S j =
∫ t j

t j−1

[
M

2
(ṙ2 + σ 2r2ϑ̇2) − ξ�ϑ̇ − U (r)

]
dt (73)

which we approximate by

S j = M

2ε
{(�r j)

2 + 2σ 2r jr j−1[1 − cos(�ϑ j)]} − ξ��ϑ j − Ujε, (74)

where �r j = r j −r j−1, �ϑ j = ϑ j −ϑ j−1 and Uj = U (r j). It is tempting to approximate (dϑ)2

by (�ϑ)2. In path integration, however, (�ϑ)4/ε cannot be ignored because (�ϑ)2 ∼ ε.
Hence, it is appropriate to replace(dϑ)2 by 1 − cos(�ϑ) even though unimportant higher
order terms are included (see [25]). Since it is sufficient for a short-time action to consider
the contributions up to first order in ε, we further employ the approximate relation for small ε

[15],

cos(�ϑ) + aε�ϑ ∼ cos(�ϑ − aε) + 1
2 a2ε2, (75)

to write the short-time action multiplied by (i/�) as
i

�
S j = i M

2�ε

(
r2

j + r2
j−1

) + (σ−2 − 1)
Mσ 2r jr j−1

i�ε
+ Mσ 2r jr j−1

i�ε
cos

(
�ϑ j − ξ�ε

Mσ 2r jr j−1

)

+ (4ξ 2 + κ)�ε

8Miσ 2r jr j−1
− i Mω2ε

4�

(
r2

j + r2
j−1

)
. (76)

We use this short-time action (multiplied by i/�) for evaluating the angular path integral.
However, before starting the angular integration, let us determine the amplitude Aj by
considering the limit ε → 0 of the short-time action (76),

lim
ε→0

Aj eiS j/� = lim
ε→0

Aj exp

{
i M

2�ε
(�r j)

2

}
exp

{
i Mσ 2r2

j

2�ε
(�ϑ j)

2

}

= Aj
2π i�ε

Mσ r j
δ(�r j) δ(�ϑ j). (77)

Now let the areal element be given by

d2r j = r j dr j dϑ j. (78)

Then the amplitude meeting condition (71) must be of the form

Aj = Mσ

2π i�ε
. (79)

Alternatively, if

d2r j = σ r j dr j dϑ j, (80)

then the corresponding amplitude is

Aj = M

2π i�ε
. (81)

Since path integration with either combination yields the same result, we employ the first
choice (78) with (79) for our calculation.

11
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3.5. Asymptotic recombination

For path integration in polar coordinates, separation of variables is not straightforward. To
separate the angular variable from the radial function, we employ the asymptotic recombination
technique (see [25]). The asymptotic form of the modified Bessel function Iν (z) for large |z|
(GR:8.451.5 in [26]) is

Iν (z) ∼ ez

√
2πz

∞∑
n=0

(−1)n (ν, n)

(2z)n
+ e−z−(ν+(1/2))π i

√
2πz

∞∑
n=0

(ν, n)

(2z)n
, (82)

where −3π/2 < arg z < π/2 and

(ν, n) = �(ν + n + 1
2 )

n!�(ν − n + 1
2 )

, (ν, 0) = 1.

The asymptotic recombination technique is based on the conjecture that the one-term
asymptotic form,

Iν (z) ∼ 1√
2πz

exp

[
z − 1

2z

(
ν2 − 1

4

)]
, (83)

is valid for sufficiently large |z| and for −π/2 < arg z < π/2 as relevant in path integration
[22, 27]. With the help of the one-term form which we refer to as the Edwards–Gulyaev
asymptotic formula, we can derive the following asymptotic relation for large |z| [25]:

Iν (az) ebz e−c/z ∼
√

a + b

a
Iμ [(a + b)z] , (84)

where a > 0, b � 0, 8a(a + b)c > b − 4(a + b)ν2 and

μ =
[

a + b

a
ν2 − b

4a
+ 2(a + b)c

]1/2

. (85)

Making use of this asymptotic relation together with the Jacobi–Anger expansion formula

ez cos ϑ =
∞∑

m=−∞
eimϑ Im(z), (86)

we obtain another asymptotic relation for large z,

exp

{
bz + z cos

[
�ϑ + i

d

z

]
− (d2 + 2 f )

2z

}
∼ √

1 + b
∞∑

m=−∞
eim �ϑ Iμ [(1 + b)z] (87)

with

μ = [
(1 + b){(m + d)2 + 2 f } − b/4

]1/2
. (88)

In the above, we have let a = 1 and c = (d2 + 2 f + 2md)/2.

3.6. Angular integration

Utilizing (87) with b = σ−2 − 1, z = Mσ 2r jr j−1/(i�ε), d = ξ = α − βk and f = κ/2, we
separate variables of the short-time propagator (70) as

K(k)(r j, r j−1; ε) = Aj exp

(
i

�
S j

)
= 1

2π

∞∑
mj=−∞

eimj (ϑ j−ϑ j−1)Rmj (r j, r j−1; ε) (89)

with the short-time radial propagator

Rmj (r j, r j−1; ε) = M

i�ε
exp

[
i M

2�ε

(
r2

j + r2
j−1

) − i Mω2ε

4�

(
r2

j + r2
j−1

)]
Iμ(mj )

(
Mrjr j−1

i�ε

)
, (90)

12
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where

μ(mj) = 1

2σ
[4(mj + ξ )2 + σ 2 − 1 + κ]1/2. (91)

The prefactor
√

1 + b appeared on the right-hand side of formula (87) results in a multiple
factor σ−1 before the summation of (89), which will cancel out the factor σ appearing in
amplitude (79). Thus, the two-dimensional path integral (69) is reduced to the form

K(k)(r′′, r′; τ ) = lim
N→∞

∫ N∏
j=1

[
1

2π

∑
mj

eimj (ϑ j−ϑ j−1) Rmj (r j, r j−1; ε)

] N−1∏
j=1

r j dr j dϑ j. (92)

The angular integration can be done straightforwardly by using the orthogonality relation∫ 2π

0
ei(m′−m)ϑ dϑ = 2πδm′,m. (93)

Namely, ∫ ∏
j=1

eimj�ϑ j

N−1∏
j=1

dϑ j = (2π)N−1
N−1∏
j=1

δm,mj eim(ϑ ′′−ϑ ′), (94)

where m = mN . After angular integration, we have mj = m for all j, and arrive at the expression
for the full propagator with a fixed wave number k,

K(k)(r′′, r′; τ ) = 1

2π

∞∑
m=−∞

exp
[
im(ϑ ′′ − ϑ ′)

]
Rm(r′′, r′; τ ), (95)

where

Rm(r′′, r′; τ ) = lim
N→∞

∫ N∏
j=1

Rm(r j, r j−1; ε)

N−1∏
j=1

r j dr j. (96)

The left-hand side of (95) is nothing but the partial wave expansion in two dimensions, and
the radial propagator (96) corresponds to the mth partial wave propagator. However, the last
radial path integration (96) remains to be carried out.

3.7. Radial path integration

To perform the radial path integration explicitly, we first note that the short-time radial
propagator (90) with m = mj for all j is similar in form as that of the radial harmonic
oscillator. Then we rewrite (96) as

Rm(r j, r j−1; ε) = M

i�ε
exp

[
i Mω

2�

(
r2

j + r2
j−1

) 1

ωε

(
1 − 1

2
ω2ε2

)]
Iμ(m)

(
Mrjr j−1

i�ε

)
. (97)

We further simplify (97) by letting η j = (Mω/2�)r2
j and ϕ = arcsin(ωε) as

Rm(r j, r j−1; ε) = Mω

i� sin ϕ
exp[i(η j + η j−1) cot ϕ] Iμ(−2i

√
η jη j−1 csc ϕ). (98)

Here we have used the approximation

cos ϕ j = cos[arcsin(ωε)] ∼ 1 − 1
2ω2ε2. (99)

At this point, for convenience, we introduce a two-point function, referred to as the υ-function
[25, 28], by

υμ(η, η′;ϕ) = −i csc ϕ exp
[
i(η + η′) cot ϕ

]
Iμ(−2i

√
ηη′ csc ϕ) (100)

13
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satisfying the convolution relation∫ ∞

0
υμ(η′′, η;ϕ)υμ(η, η′;ϕ) dη = υμ(η′′, η′; 2ϕ) (101)

which can be derived from Weber’s formula (GR: 6.633.2 in [26]) as modified in [23],∫ ∞

0
exp(i αr2) Iμ(−i ar) Iμ(−i br) r dr = i

2α
exp

[
− i

4α
(a2 + b2)

]
Iμ

(
− ab

2α

)
(102)

valid for Re α > 0 and Re μ > −1. Then the short-time radial function can be expressed in
terms of the υ-function as

Rm(r j, r j−1; ε) = Mω

�
υμ(m)(η j, η j−1;ϕ). (103)

Now we are ready to perform the radial path integration. Substitution of this into (96) gives

Rm(r′′, r′; τ ) = Mω

�
lim

N→∞

∫ N∏
j=1

υμ(m)(η j, η j−1;ϕ)

N−1∏
j=1

dη j. (104)

The convolution property (101) of the υ-function enables us to reach

Rm(r′′, r′; τ ) = Mω

�
υμ(m)(η

′′, η′;ωτ ). (105)

In the above, we have also used the property

lim
N→∞

(Nϕ) = lim
N→∞

(N sin ϕ) = lim
N→∞

(ωNε) = ωτ. (106)

In terms of the modified Bessel function, it is written as

Rm(r′′, r′; τ ) = Mω

i� sin ωτ
exp

[
i Mω

2�
(r′2 + r′′2) cot ωτ

]
Iμ(m)

(
Mωr′r′′

i� sin ωτ

)
(107)

with

μ(m) = 1

2σ

√
4(m + α − βk)2 + σ 2 − 1 + κ. (108)

Note that μ(m) is a real positive number if 1 − σ 2 < κ . In this manner, we have completed
the radial path integration for the partial propagator with k fixed. It turns out that the radial
propagator we have obtained above is identical in form with that of the radial harmonic
oscillator. The characteristics of the dispiration, the flux tube, the uniform magnetic field and
the assumed potential, which make the present system different from the simple harmonic
oscillator, are all taken into the index μ(m) of the modified Bessel function.

With the radial propagator (107), the full propagator with k fixed is obtained by

K(k)(r′′, ϑ ′′; r′, ϑ ′; τ ) = Mω

2π i� sin ωτ
exp

[
i Mω

2�
(r′2 + r′′2) cot ωτ

]

×
∞∑

m=−∞
eim(ϑ ′′−ϑ ′) Iμ(m)

(
Mωr′r′′

i� sin ωτ

)
(109)

or by converting ϑ into θ = ϑ + ω̄t,

K(k)(r′′, θ ′′; r′, θ ′; τ ) = Mω

2π i� sin ωτ
exp

[
i Mω

2�
(r′2 + r′′2) cot ωτ

]

×
∞∑

m=−∞
eim(θ ′′−θ ′−ω̄τ ) Iμ(m)

(
Mωr′r′′

i� sin ωτ

)
. (110)
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4. Winding number expansion

In the angular path integration performed above, we have not explicitly taken account of
the topological structure of the background medium M. Since M = R3\{x = y = 0} ∼=
R × R+ × S1, the paths connecting two points, say a and b, in M can wind around the
z-axis many times, and may be classified (into homotopy classes) by the fundamental group
π1(M) = π1(S1) ∼= Z of M. A set of all homotopically equivalent paths in M is now
characterized by a single winding number n ∈ Z. Therefore, the propagator K(b, a) may be
given as a sum of subpropagators K̃n(b, a) for the paths with different winding numbers n,

K(b, a) =
∑
n∈Z

Cn K̃n(b, a). (111)

The paths in the same class may be deformed into one another, so that the transition amplitudes
corresponding to these paths must share the same phase factor. On the other hand, the
paths belonging to different classes may have different phases. Laidlaw and deWitt [29], and
Schulman [13] argue that the coefficients Cn are the one-dimensional unitary representations
of the fundamental group π1(M) ∼= Z. From equation (111), it is apparent that Cn+m = CmCn.
If no degeneracies and no internal degrees of freedom are assumed, Cn+1 = eiδCn. Then
the coefficients are given by the one-dimensional representations of the fundamental group
π1(M) or the additive group Z, namely Cn = einδ .

It has also been pointed out [30] that the angular momentum representation and the
winding number representation are complementary to each other via Poisson’s sum formula,∑

n∈Z

e2π inξ =
∑
m∈Z

δ(ξ − m). (112)

This means that the propagator K(k)(r′′, r′; τ ) we have obtained in the preceding sections, as is
given in the angular momentum representation, cannot be regarded as a subpropagator carrying
a single winding number. Similarly, any partial propagator with a fixed angular momentum
quantum number cannot be decomposed to a full set of subpropagators with winding numbers.
The propagator obtained for the dispiration field must be understood as a full bound state
propagator that contains contributions from all homotopically possible paths (see [15, 16]
for detail). Thus, we look for a winding number representation of K(k)(r′′, r′; τ ) in (109) via
Poisson’s formula (112).

Let us rewrite (95) as

K(k)(r′′, r′; τ ) = 1

2π

∫ ∑
m∈Z

δ(α′ + λ − m) ei(α′+λ)(ϑ ′′−ϑ ′) Rα′+λ(r
′′, r′; τ ) dλ, (113)

with the radial propagator Rm(r′′, r′; τ ) given by (107). Then we utilize Poisson’s formula
(112) to convert (113) into the winding number representation

K(k)(r′′, r′; τ ) =
∑
n∈Z

CnK̃n(r′′, r′; τ ), (114)

where

Cn = ei2πnα′
(115)

and

K̃n(r′′, r′; τ ) = Mω eiα′(ϑ ′′−ϑ ′)

2π i� sin ωτ
exp

[
i Mω

2�
(r′2 + r′′2) cot ωτ

]

×
∫ ∞

−∞
eiλ(ϑ ′′−ϑ ′−2πn) Iμ(α′+λ)

(
Mωr′r′′

i� sin ωτ

)
dλ. (116)
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In the coefficients Cn of (115), α′ can chosen to be an arbitrary real number. In particular,
choosing α′ = −α, one observes that the magnetic flux only appears as a pure phase
factor exp{−iα(ϑ ′′ − ϑ ′ + 2πn)} in (116). The choice α′ = βk − α furthermore shows
that the screw dislocation has a similar effect, that is, it only appears as a phase
exp{−i(α−kβ)(ϑ ′′−ϑ ′+2πn)} in (116). Evidently both belong to U (1), the one-dimensional
unitary representation of π1(M). The result is consistent with the Laidlaw–deWitt–Schulman
theorem albeit the unitary factor is not unique.

5. Energy spectrum and wavefunctions

All the information concerning the energy spectrum and associated radial wavefunctions for
the bound states in two dimensions is contained in the radial propagator (107). In order to
extract such information out of (107), we make use of the Hille–Hardy formula (GR: 8.976.1
in [26])

Iμ

(
2
√

xyz

1 − z

)
(xyz)−μ/2

1 − z
exp

[
−1

2
(x + y)

1 + z

1 − z

]

= exp

[
−x + y

2

] ∞∑
n=0

n! zn

�(n + μ + 1)
L(μ)

n (x) L(μ)
n (y), (117)

where L(μ)
n (x) is the Laguerre polynomial related to the confluent hypergeometric function as

L(μ)
n (x) = �(n + μ + 1)

�(μ + 1) n!
F(−n, μ + 1; x). (118)

Note that the confluent hypergeometric function is in general an infinite series,

F(a, b; x) = �(b)

�(a)

∞∑
s=0

�(a + s)

�(b + n) s!
xs, (119)

which converges only for |x| < 1 and becomes a polynomial for any x when a = 0,−1,−2, ....
Letting x = (Mω/�)r′ 2, y = (Mω/�)r′′ 2 and z = e−2iωτ in (117), we write (107) as

Rm(r′′, r′; τ ) = 2Mω

�

(
Mω

�
r′r′′

)μ

exp

[
−Mω

2�
(r′ 2 + r′′ 2)

]

×
∞∑

n=0

n! e−iτω(2n+μ+1)

�(n + μ + 1)
L(μ)

n

(
Mω

�
r′ 2

)
L(μ)

n

(
Mω

�
r′′ 2

)
. (120)

With this radial propagator, k-propagator (110) can be cast into the form

K(k)(r′′, θ ′′; r′, θ ′; τ ) =
∞∑

m=−∞

∞∑
n=0

ψmn(r
′′, θ ′′)ψ∗

mn(r
′, θ ′) e−iτ Ẽmn/�, (121)

where

Ẽmn = �ω(2n + μ(m) + 1) + m�ω̄ (122)

and

ψmn(r, θ ) =
√

Mω

π�

√
n!

�(n + μ + 1)

(
Mω

�
r2

)μ/2

e−(Mω/2�)r2
L(μ)

n

(
Mω

�
r2

)
eimθ . (123)

Substitution of (91) into (122) results in the energy spectrum for the particle bound in two
dimensions

Ẽmn = �ω

{
2n + 1 + 1

2σ

√
4(m + α − βk)2 + σ 2 − 1 + κ

}
+ m�ω̄, (124)
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where n = 0, 1, 2, . . ., m = 0,±1,±2, . . .. Adding the continuous spectrum (63) as well as
the ignored V0 yields the full spectrum of the system,

Emnk = Ẽmn + �
2k2

2M
+ (βk − α)�ω̄. (125)

6. Concluding remarks

In concluding this paper, we would like to make some remarks on the discrete energy spectrum
(124) for the two-dimensional motion around the dispiration. First we examine special cases.

(i) The Landau levels: the presence of the uniform magnetic field is unimportant for the study
on the dispiration. However, if there are no dislocation, no disclination, no magnetic tube,
no external short-ranged repulsive and long-ranged attractive potential but the uniform
magnetic field, that is, if α = β = κ = 0, σ = 1 and ω0 = 0, then, as is expected, we
have the Landau levels

En̄,k = 2�ωL

(
n̄ + 1

2

)
+ �

2k2

2M
, (126)

where ωL = eB/(2M) and n̄ = n + (|m| + m)/2 = 0, 1, 2, . . ..
(ii) The screw dislocation spectrum: in the absence of the uniform magnetic field, the

disclination and the inverse-square potential, i.e. in the case of ω̄ = 0, σ = 1 (i.e.
κ = 0), the discrete energy spectrum for the two-dimensional motion (with fixed k)
becomes

Ẽmn = �ω0(2n + 1 + |m + α − βk|), (127)

which shows that the effect of the Burgers vector b = 2πβ is practically identical to that
of the magnetic tube (the Aharonov–Bohm effect) as pointed out in [11]. In comparison
with Wilczek’s anyon model [33], the screw dislocation plays a similar role of an anyon
by generating a fractional spin. From the geometrical point of view, as we have seen
earlier, the line dislocation causes torsion. This spectrum explicitly shows that a source
of torsion generates a spin effect [31, 32]. In the limiting case of the vanishing flux tube
and the diminishing Burgers vector, we have simply the harmonic oscillator spectrum

En̄ = �ω0(n̄ + 1), (128)

where n̄ = 2n + |m| = 0, 1, 2, . . .. The harmonic oscillator potential is important in
the present dislocation spectrum, without which two-dimensional bound states cannot
be formed in the vicinity of the defect. In the calculation of the partition function for an
anyon gas, the oscillator potential has played a role of the regulator for taming divergences
[33, 34].

(iii) The wedge disclination spectrum: if α = 0, β = 0 and ω̄ = 0, then the two-dimensional
discrete spectrum takes the form

Ẽmn = �ω0

{
2n + 1 + 1

2σ

√
4m2 + σ 2 − 1 + κ

}
, (129)

which belongs to a particle bound near the disclination by the harmonic oscillator potential
plus a repulsive inverse-square potential. From (18), it is clear that σ = 1 implies
the vanishing deficit angle γ = 0. This corresponds to the absence of disclination. If
0 < σ < 1, then 2π > γ > 0, that is, the medium carries a positive curvature at the
center of disclination. In comparison with the assumed square inverse repulsive potential
term with κ inside the square root of the spectrum, we see that the negative term with
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σ 2 − 1 represents the effect of an attractive force; we may argue that the disclination
effectively generates a short-ranged attractive force around it. If σ > 1, the medium is
negatively curved, and a repulsive force is created around the center of disclination (the
saddle point).

The Schrödinger equations for the harmonic oscillator interacting separately with
dislocation and disclination have been solved by Furtado and Moraes [36]. In the absence
of the flux tube α = 0, our dislocation spectrum (127) coincides with their result obtained for
the dislocation. However, our disclination spectrum (129) with κ = 0 is not in agreement with
theirs.

Finally, we examine for the case of disclination the difference between the result from the
Schrödinger equation and that of path integration. Since some errors are involved in [36], we
present our own solution of the Schrödinger equation which is slightly different from that in
[36]. The line element (1), if β = 0, reads

ds2 = dr2 + σ 2 r2 dθ2 + dz2. (130)

Although the Laplace–Beltrami operator can be used to write down the Schrödinger equation
as in [36], we choose to let φ = σθ and express (130) as

ds2 = dr2 + r2 dφ2 + dz2, (131)

which is identical with the flat space line element except for 0 � φ < 2πσ. Then it is rather
trivial to write down the Schrödinger equation in terms of coordinates (r, φ, z), namely

− �
2

2M

{
1

r

∂

∂r

(
r

∂

∂r

)
+ 1

r2

∂2

∂φ2
+ ∂2

∂z2

}
ψ + V (r)ψ = Eψ, (132)

which can be easily solved for a two-dimensional harmonic oscillator potential V (r) =
1
2 Mω2r2 with the periodic condition ψ(r, 2πσ +φ, z) = ψ(r, φ, z). The normalizable solution
is obtained in the form

ψ(r, φ, z) = N eikzeimφ/σ e−Mωr2/2� r|m|/σ F(−nr, 1 + |m|/σ ; (Mω/�)r2), (133)

with the condition
1

2

(
1 + |m|

σ
− E

�ω
+ k2

�
2

2M

)
= −nr (nr ∈ N0), (134)

which yields the energy spectrum

Enrmk = �ω

{
2nr + 1 + |m|

σ

}
+ k2

�
2

2M
. (135)

Here m ∈ Z as follows from the periodic condition. It is apparent that the above spectrum
differs from the path integral result (129). The term σ 2 −1 inside the square root of (129) lacks
in (135). Furthermore, the wavefunctions are different. The wavefunctions (133) with m �= 0
vanish at r = 0, but the function with m = 0 remains to be non-zero. This is in contrast with
the fact that the radial wavefunction (123) obtained by path integration vanishes at r = 0 for
all values of m. In this treatment, the nonvanishing singular curvature at the disclination center
r = 0 plays no role. The Schrödinger equation may have to be modified so as to accommodate
the curvature effect.

In general, the Schrödinger equation in curved space is written in the form{
− �

2

2M
� + Vc(r) + V (r)

}
ψ(r, t) = i�

∂

∂t
ψ(r, t), (136)

where � is the Laplace–Beltrami operator, Vc(r) is the potential due to the curvature effect and
V (r) is any external potential. Historically, Podolsky [37] defined the Schrödinger equation in
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curved space without the curvature term, i.e. Vc(r) = 0, but, as Schulman [14] puts it, there is
no reason, other than the prejudice for simplicity, to ignore the curvature term. Comparing with
Feynman’s path integral, DeWitt [38] has proposed that the scalar curvature term is needed,
that is, Vc(r) = g�

2R(r) where g is a constant. More recently, however, Kleinert [39] has
argued by using a quantum equivalence principle that there is no need of the curvature term.
On the other hand, viewing the motion in a two-dimensional curved space as a constrained
motion on the curved surface imbedded in a three-dimensional Euclidean space, Jensen and
Koppe [40], da Costa [41] and others have argued that the Schrödinger equation on a curved
surface carries in it an effect potential due to the Gaussian curvature K(r) and the mean
curvature H(r).

Our path integral calculation necessitates an effective potential of the inverse square form
which is due to neither the scalar curvature nor the Gaussian curvature. In a forthcoming
paper [42], it will be shown that the path integration in a conical space with K = 0 and
H = √

1 − σ 2/(2σ r) for r �= 0 is compatible with the Schrödinger equation modified with
the mean curvature H of the conical surface as suggested in [40].
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